Tetrahedron Letters Vol. 21, pp 3299 - 3302 © Pergamon Press Ltd. 1980. Printed in Great Britain

STRUCTURE AND CONFORMATIONAL ISOMERISM OF THE MAJOR DIMER OF 2,3-NAPHTHOQUINODIMETHANE¹

T.W. Bell*, C.M. Bowes and F. Sondheimer* Chemistry Department, University College, Gordon Street, London WCIH OAJ

Abstract: The major product from 2,3-naphthoquinodimethane formed by cyclisation of o-dipropadienylbenzene was found to be the dimer 5 containing an eight-membered ring, for which the inversion barrier was determined by dynamic ¹H NMR spectrometry, $\Delta G^{2} = 18$ kcal/mole.

The 1,2-quinodimethanes are of considerable interest as synthetic intermediates² and as the objects of theoretical^{3,4}, mechanistic⁵⁻⁸ and spectroscopic^{4,9} investigations. The products of cycloaddition reactions of unsubstituted 1,2-quinomethanes are important as indicators of the biradicaloid^{4a} character of their ground states. Previously^{6b}, we postulated the formation of 2,3naphthoquinodimethane (1) by rapid cyclisation of <u>o</u>-dipropadienylbenzene (2). In the absence of trapping agents other than oxygen, 1 was rapidly transformed^{6b} to the peroxide 3^{10} (25%), the symmetrical dimer 4 (8%) and what appeared to be an isomeric mixture of naphthalenic dimers (5, 47%). More recently, the matrix isolation and observation of 1, generated by photolysis of 6, and conversion to 3 in the presence of air, were reported^{4b}.

We have now determined that the major product from 2,3-naphthoquinodimethane generated by our method is the unsymmetrical dimer 5 [m.p. 142-145°C, from EtOH; λ_{max} (EtOH) 227 (ϵ 74,000), 264 (11,000), 275 (12,600), 284 (13,500), 293 (sh) (12,000), 323 (sh) (1,400) nm], which exists in solution as a mixture of conformers. The 100 MHz ¹H NMR spectrum of 5 at 27°C proved very complex in the olefinic region (Figure 1), though at 150°C the spectrum was simplified to that expected for structure 5 on the basis of NMR model compounds^{11,12}. Computer simulation of the line shapes at intermediate temperatures was complicated by overlapping peaks, so the deuterated derivative 5-d₈ was synthesised from <u>7 via 8.</u>¹ The dynamic ¹H NMR spectra of 5-d₈ (Figure 2) accurately matched the calculated line shapes in the benzyl proton (H_b) region, and the average free energy of activation was estimated, ΔG^{\ddagger} = 18.1 ± 0.2 kcal/mole. The variable temperature spectra of deuterium-free 5 are roughly consistent with this value.

According to molecular models, there are two possible conformations of 5, designated exo ar endo (vide infra), which are consistent with the ¹H NMR spectroscopic data (Table 1). The two exo cyclic methylene protons (H_m) of exo-5 are shielded by the naphthalene ring by 0.6 ppm, relative to reference compounds^{11,12}. In the endo conformation the α -styryl (H_S) proton is shielded inster (1.3 ppm). The exo/endo ratio was found to be 2:1 in CDCl₃ at 27°C, corresponding to a free energy difference of 420 cal/mole. Interestingly, crystalline 5 consists of pure exo-5, since only the ¹H NMR signals assigned to exo-5 were observed when crystalline 5 was dissolved in THF-d₈ at -40° The geometries of the central rings of exo and endo-5 closely resemble those of the two conformer of (1E,5Z)-cyclooctadiene which were postulated by Cope.¹³ and later observed by low temperature ¹³C NMR spectrometry¹⁴. Though the latter ring inversion barrier has been estimated as only about 8 kcal/mole¹⁴, the fusion of aromatic rings to cyclooctenes generally increases such barriers¹⁵. Preliminary results¹⁶ suggest that the barrier to ring inversion for (3E)-1,2,5,6-tetrahydrocycle octa[1,2-b]naphthalene is similar to that for 5.

Structures analogous to the dimer 5 have been reported previously, although they have not been found to exhibit conformational isomerism. Thus, the dimer 10 has been isolated by Roth and Erker¹⁷ from a reaction involving the diradical 2,3-dimethylene-1,4-cyclohexadienyl 9 as an inter mediate. Defoin <u>et al</u>¹⁸ have shown that the dimer 12 is one of the products obtained from the substituted 1,2-quinodimethane 11, a reaction which was postulated to involve a concerted Woodwa. Hoffmann allowed¹⁹ $[\pi 8_5 + \pi 6_5]^{20}$ cycloaddition. The isolation of the dimers 4 and 5 from 2,3-

3300

Figure 1. ¹H NMR Spectra of 5 in Toluene-d₈ (7, 100 mHz, °C)

Figure 2. ¹H NMR Spectra of 5-dg in Toluene-dg (τ , 100 MHz, °C)

<u>Table 1.</u> ¹H NMR Chemical Shift Assignments (τ , 100 MHz, CDCl₃)

Proton	exo-5	endo-5
	6.73	6.34
нр	3.6]	4.94
н _э	E 60 E 76	4,89, 4,95
Hm	5.00, 5.70	

naphthoquinodimethane 1 may involve initial formation of the diradical 13, which gives rise to 4 or 5 depending on the direction of the formation of the second carbon-carbon bond. Alternatively, the dimer 5 may be produced directly from 1 by a concerted $[\pi^{12}_{\rm s} + \pi^{10}_{\rm s}]^{20}$ cycloaddition. It is

13

of interest that the dimer 5 can be converted to $\frac{4}{2}$, presumably via the diradical 13, but only at elevated temperatures (160°C).

<u>Acknowledgements</u>. We wish to thank Dr. D.F. Montecalvo for performing initial experiments with 2, and Dr. J.E. Anderson for assistance with computer simulations. Financial support from the Royal Society is gratefully acknowledged.

References and Notes

- 1. For details of this work, see T.W. Bell, Ph.D. Thesis, University of London, 1980.
- 2. Inter alia, W. Oppolzer, Synthesis, 793 (1978).
- 3. (a) G.J. Gleicher, D.D. Newkirk and J.C. Arnold, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 2526 (1973);
 (b) J. Aihara, <u>ibid</u>., 98, 2750 (1976).
- 4. (a) C.R. Flynn and J. Michl, <u>ibid</u>., <u>96</u>, 3280 (1974);
 (b) M. Gisin and J. Wirz, <u>Helv</u>. <u>Chim</u>. <u>Acta</u>, 59, 2273 (1976).
- 5. L.A. Errede, J. Am. Chem. Soc., 83, 949 (1961).
- 6. (a) D.A. Ben-Efraim and F. Sondheimer, <u>Tetrahedron Lett.</u>, 313 (1963);
 (b) C.M. Bowes, D.F. Montecalvo and F. Sondheimer, <u>ibid</u>., 3181 (1973);
 (c) C.M. Bowes, Ph.D. Thesis, University of London, 1973.
- 7. J.R. duManoir and J.F. King, J. Chem. Soc., Chem. Commun., 541 (1972).
- 8. Inter alia, K.K. de Fonseka, J.J. McCullough and A.J. Yarwood, J. Am. Chem. Soc., 101, 3277 (1979).
- 9. K.L. Tseng and J. Michl, *ibid.*, 99 4840 (1977).
- 10. L.H. Dao, A.C. Hopkinson, E. Lee-Ruff and J. Rigaudy, Can. J. Chem., 55, 3791 (1977).
- 11. I. Murata, T. Nakazawa, M. Kato, T. Tatsuoka and Y. Sugihara, Tetrahedron Lett., 1647 (1975).
- 12. B. Miller and M.R. Saidi, J. Am. Chem. Soc., 98, 2544 (1976).
- 13. A.C. Cope, C.F. Howell, J. Bowers, R.C. Lord and G.M. Whitesides, ibid., 89, 4024 (1967).
- 14. (a) S.G. Davies, P.F. Newton and G.H. Whitham, J. Chem. Soc., Perkin II, 1371 (1977);
 (b) M. van Buren, P. Bischofberger and H.-J. Hansen, <u>Helv. Chim. Acta</u>, 61, 1695 (1978).
- 15. L.M. Jackman and F.A. Cotton, Eds., "Dynamic Nuclear Magnetic Resonance Spectroscopy", Academic Press, New York, 1975.
- 16. T.W. Bell and T.M. Cresp, unpublished results.
- 17. W.R. Roth and G. Erker, Angew. Chem., Int. Ed. Engl., 12, 503 (1973).
- 18. A. Defoin, J. Baranne-La Font, J. Rigaudy and J. Guilhem, Tetrahedron, 34, 83 (1978).
- 19. R.B. Woodward and R. Hoffmann, "The Conservation of Orbital Symmetry", Verlag Chemie, Weinheim, 1970.
- 20. Electrocyclic reactions will be formalised in terms of the largest possible π-components.

(Received in UK 9 June 1980)